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Abstract
Recently, resource allocation in cloud computing has become a popular research topic. Hi-WAY is a scientific workflow
management system that facilitates workflows involving large-scale inputs such as big data. Hadoop, a framework designed
to implement distributed systems, allows Hi-WAY to be run on thousands of computing nodes with desirable fault tolerance.
Task scheduling is not difficult in a homogeneous Hadoop system, where computing nodes have identical specifications.
However, task scheduling could be problematic in heterogeneous systems, where specifications such as processor power,
memory, and bandwidth may vary from node to node. This paper introduces a workflow scheduler on the Hadoop framework
(WSH), accounting for system heterogeneity when scheduling computing- and IO-intensive jobs. WSH uses a training task to
collect information before distributing jobs. The results demonstrate effective job allocation and load balancing improvement
in Hadoop, leading to increased resource efficiency and reduced makespan. Based on various experiments and the use of
different workflows, the proposed method improves the scheduling length ratio by 42%, reduces makespan by 20%, and
enhances speedup by approximately 37% compared to the algorithm.
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1 Introduction

The massive volume, variety, and rapid evolution of big data
generated by IoT devices, social networks, and scientific

B Mehdi Hosseinzadeh
mehdihosseinzadeh@duytan.edu.vn

Amir Masoud Rahmani
rahmania@yuntech.edu.tw

Ehsan Yazdani Chamzini
Ehsan.yazdani@sco.iaun.ac.ir

Mohsen pourshaban
Pourshaban@sco.iaun.ac.ir

1 Future Technology Research Center, National Yunlin
University of Science and Technology, Yunlin, Taiwan

2 Faculity of Computer Engineering, Najafabad Branch,
Islamic Azad University, Najafabad, Iran

3 Big Data Research Center, Najafabad Branch, Islamic Azad
University, Najafabad, Iran

4 School of Computer Science, Duy Tan University, Da Nang,
Vietnam

5 Jadara University Research Center, Jadara University, Irbid,
Jordan

organizations present challenges that traditional compu-
tational processes cannot handle effectively [28]. These
challenges include ensuring system scalability to man-
age vast data volumes, handling network latency, man-
aging uneven workload distribution across computational
resources, and precisely managing dependencies between
processing stages. Additionally, resource heterogeneity and
data localization are essential for optimizing system perfor-
mance. Furthermore, fault tolerance and unpredictable data
volume fluctuations demand flexible scheduling approaches.
Alongside the need for energy optimization and real-time
processing, these factors collectively make big data work-
flow scheduling a complex and crucial issue in distributed
systems. To address these challenges, programming mod-
els like MapReduce and frameworks such as Hadoop have
been developed, significantly enhancing parallel processing
capabilities in cloud and distributed environments and over-
coming the limitations of traditional approaches [15, 23, 26].

Hadoop is an open-source software framework written in
Java, designed to allow parallel processing on thousands of
machines with high fault tolerance [6]. Many large corpora-
tions, including Facebook and Yahoo, are currently using
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Hadoop. Nowadays, social networks and scientific orga-
nizations generate petabytes of data every week [9, 17].
Researchers must create pipelines and incorporate numer-
ous tools to link tasks to manage these huge amounts of data.
Scientific workflow management systems have been devel-
oped to facilitate the processing of these data. Hi-WAY is
a scientific workflow management system implementing a
black-box view of tools, tasks, and workflow data. Thus, it
allows every task in the workflow graph, from a simple script
to various external services, to be processed in Hadoop [4,
5].

Directed acyclic graph (DAG) scheduling for the proper
task allocation to heterogeneous computing nodes in dis-
tributed systems is an NP-Hard problem [12]. In [34], a
heuristicmethod is proposed to scheduleHeterogeneous Ear-
liest Finish Time (HEFT) in multiprocessor systems, where
tasks are explicitly prioritized in the workflow graph based
on upward ranking. Then, in the processor allocation phase, a
task is allocated to a processor such that the predefined cost,
i.e., makespan, is minimized. In [33], an optimum schedul-
ing policy, called MapReduce-enabled workflow scheduler
(MRWS), is presented, which incorporates the idea of the
HEFTmethod [34]. In this method, job scheduling in a work-
flow is accomplished by turning jobs into tasks such that these
tasks can be distributed over proper slots. Jobs that require
more processing are called computing-intensive, and other
jobs are called IO-intensive. In order to achieve better per-
formance, several tasks of a job could be scheduled in slots’
idle time, even if they are shorter than the time required to
complete the job. This approach results in higher efficiency
and shorter runtimes. This paper presents a method for pro-
cessing workflow graphs with big data, where the tasks in the
workflow graph are allocated based on the computing nodes’
running ability.

When implementing Hadoop in heterogeneous environ-
ments, poor data blocks and task distribution may lead to
overload or underload and higher response time on some
computing nodes. This is because faster computing nodes
process their data blocks and call them from slower nodes,
causing heavy traffic on the network bandwidth and multi-
ple runs of speculative tasks. A few algorithms are proposed
for scheduling big data workflows in heterogeneous environ-
ments. Because of the scarcity of scheduling policies in the
Hadoop framework, the algorithms in this field should be able
to consider parallel processing of jobs in the workflow graph,
distribution of tasks based on types of jobs (computing-
intensive and IO-intensive), data locality, distribution of data
blocks based on computing powers of nodes, storage capac-
ities, and network structure.

Contributions of this study are as follows:

• Our proposed workflow scheduler (WSH) handles diverse
resource requirements in Hadoop environments and

focuses on addressing the challenge of task scheduling
in heterogeneous Hadoop systems.

• By using training tasks to gather system information
before job distribution, our workflow scheduler enhances
its adaptability to dynamic environments.

The rest of this paper is structured as follows: In Sect. 2,
the methods and algorithms on MapReduce and workflows
in the heterogeneous computing cluster will be reviewed. In
Sect. 3, the proposed method will be explained in detail. In
Sect. 4, the implementation results will be compared and
analyzed, and Sect. 5 concludes the paper.

2 RelatedWork

Scheduling is a technique for allocating resources to jobs
to minimize starvation and maximize resource utilization.
One way to improve scheduling performance is to set dead-
lines for jobs. Scheduling algorithms for MapReduce jobs
are divided into two general groups, inbuilt and user-defined,
consisting of several methods. Three default inbuilt sched-
ulers are available in the Hadoop framework: first in first out
(FIFO), capacity, and fair [35]. Hi-WAY consists of inbuilt
static and dynamic schedulers. Dynamic schedulers include
methods such as first come first served (FCFS), and two
examples of static schedulers are round-Robin and HEFT
[4]. The user-defined scheduling algorithms for MapReduce
jobs and others that may improve performance in this context
are reviewed in [27].

In [8], Rahmani et al. introduce an ant colony optimization
algorithm for cloud computing applications, where schedul-
ing overheads in dynamic environments are reduced. In [13],
several case studies are performed on a select group of
job scheduling and load balancing algorithms developed for
clouds, and these algorithms are classified into multiple sub-
groups.

In the algorithm presented in [11], virtual machines are
classified into virtual clusters, and load balancing and work-
load are improved by taking replications into account. The
authors [2] presented a dynamic scheduling algorithm incor-
porating the hill-climbing algorithm for load balancing and
makespan reduction. The conflict between specifications of
physical devices and user requests leads to failure to guaran-
tee service quality in the pass layer for customers and lower
energy efficiency for cloud service providers. In [3], a particle
swarm optimization-based method is proposed to reallocate
migratedvirtualmachines in the overloadedhost to tackle this
issue. In [37] HEMS algorithm is proposed in hybrid cloud
environment that consists of five components: workflow
scheduling sequence generation, task scheduling sequence
initialization for each workflow, optimal scheduling scheme
determination for each task, initial task scheduling sequence
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optimization, and optimal scheduling plan optimization for
minimizing the total electricity cost of all servers. In [25]
HGSOA-GOA algorithm is proposed for scientific workflow
schedulingproblems inmulti-cloud computing environments
for optimizing factors such as makespan, cost, energy, and
throughput. In [24] Mikram et al. introduce the Hybrid
HEFTPSO-GA algorithm (HEPGA), aiming to efficiently
allocate tasks to available resources across the datacenter
and minimizing the makespan. In [24] a hybrid scheduling
algorithm (PCP–ACO) is introduced, consists of two phases:
task ordering and resource selection. This aims to minimize
the execution cost of a workflow in cloud environments. In
[38]Xue et al. introduce a deep reinforcement learning-based
workflow scheduling in Hadoop that can significantly reduce
the average job latency.

Table 1 presents a shortlist of workflow scheduling algo-
rithms available for the cloud and their workflow type and
running environment.

The purpose of this study is to consider computing clus-
ters in a heterogeneous manner, as these clusters comprise
processing, storage, and network resources with varying
capacities and accessibility. Consequently, we aim to cluster
heterogeneous processing resources, given that some tasks
are computationally intensive while others are I/O inten-
sive. By providing the scheduler with information about the
effectiveness of heterogeneous resources,we can assign tasks
to appropriate compartments, enabling each node to deliver
high performance.

3 The ProposedWorkflow Scheduler

In this research, the processing of big data workflows is
considered a DAG consisting of multiple jobs. In a hetero-
geneous cloud computing setting, computation speed may
vary from node to node and even from job to job in one node,
which is likely to cause a load imbalance. Hence, we propose
an algorithm for big data workflow scheduling in Hadoop,
which considers the nodes’ heterogeneity when scheduling
the Hi-WAY jobs and controlling their running process. This
algorithm consists of two stages: job prioritization and job
allocation. First, all jobs’ priorities are computed, and then,
the proper cluster for the job allocation is determined by run-
ning a training task on the first node of every cluster. Our
scheduling algorithm incorporates some of the MRWS algo-
rithm’s policies [33] and the HEFT algorithm into Hi-WAY.
InMRWS, the big data workflow consists of several MapRe-
duce jobs.

When possible, each job is divided into tasks. Otherwise,
the whole job is considered a task. In WSH, each job in
the workflow graph consists of many tasks, and each task
is regarded as a Hi-WAY job. WSH schedules the job by
running the training task on the first node of each cluster. In

this paper, the jobs requiring resources with high processing
power are considered computing-intensive, and other jobs
are considered IO-intensive. We try to minimize makespan
and maximize resource efficiency with the insertion’s help
of the idle time policy [34] by running some jobs between
others.

3.1 The ProposedWorkflowModel

The proposed workflow graph is represented byWF and con-
sists of the following components:

WF � ( job, edge, t ype)

where a job represents the jobs in the workflow graph,
an edge represents the set of edges between the jobs in
Hi-WAY (each edge has a value representing the commu-
nication cost, which in the proposed method is ignored). The
type describes the type of each Hi-WAY job (computing-
intensive/IO-intensive) once run, which helps us allocate
jobs to nodes. Suppose some clusters have equal finish times
after running the training task on the first node of clusters.
In that case, the job will be classified as IO-intensive and
allocated to the cluster with the lowest processing power so
that more powerful nodes remain available for computing-
intensive jobs.

3.2 Clustering of Heterogeneous Resources
in the ProposedMethod (WSH)

The jobs need processing and IO resources. However, when
the heterogeneous computational clusters, computing power
differences lead to unbalanced loads and prolonged response
times. In WSH, a heterogeneous cluster is divided into
subclusters of nodes such that each subcluster has equal pro-
cessing power and memory. Figure 1 shows the proposed
procedure for clustering heterogeneous resources and the
workflow scheduler model.

Step 1: Cluster dividing into subclusters—In WSH, a
heterogeneous cluster is divided into subclusters of nodes,
each subcluster having uniform processing power and
memory capacity. This heterogeneous cluster may include
resources from a private cloud or leased resources from a
public cloud; however, for the purposes of this study, private
cloud resources are assumed.

Step 2: Job Prioritization—Jobs within Hi-WAY are
prioritized based on upward ranking, ensuring optimized pro-
cessing and resource allocation.

Step 3: Training Task— The scheduler executes a train-
ing task to collect data on the performance and effectiveness
of the heterogeneous resources, enabling optimized alloca-
tion of jobs to appropriate nodes.
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Table 1 Comparison of workflow scheduling algorithms

Implementation/simulation environment Environment Type of workflow Author(s)

CloudSim Cloud Scientific workflows [22], Mikram et al., 2024

WorkflowSim hybrid cloud Scientific workflows [20], Shuang Wang et al., 2024

GridSim Grid Simple workflows [24], Moheb et al., 2024

WorkflowSim Cloud Scientific workflows [25],Yang et al., 2024

Python Cloud Simple workflows [26], Choudhary., 2024

WorkflowSim CloudSim hybrid cloud Scientific workflows [21], Mohammadzadeh et al., 2023

Python cloud Scientific workflows [22], Shobeiri et al., 2023

Nextflow, Kubernetes Cloud Scientific workflows [27], Lehmann et al., 2023

Hadoop Cloud Scientific workflows [23], Xue et al., 2023

CloudSim Cloud-Fog Scientific workflows [28], Rizvi et al., 2023

Hadoop Cloud Scientific workflows [29], Koo et al., 2022

Nextflow, Kubernetes Cloud Scientific workflows [30], Bader et al., 2021

Amazon EC2, Google cloud engine, Microsoft Azure Cloud Scientific workflows [18], Mutaz et al., 2019

Hadoop, Spark Cloud Scientific workflows [6], Kouanou et al., 2018

Hadoop Cloud Simple workflows [31], Liu et al., 2018

Hadoop, Hi-WAY Cloud Scientific workflows [8], Marc et al., 2017

CloudSim Cloud Scientific workflows [32], Li et al., 2016

Hadoop Cloud Scientific workflows [33], Bikas et al., 2015

Hadoop Cloud Scientific workflows [34], Krish et al., 2014

Hadoop Cloud Scientific workflows [12], Zhou et al., 2014

Hadoop Cloud Scientific workflows [35], Li et al., 2014

Hadoop Cloud Scientific workflows [36], Roshan et al., 2013

Fig. 1 A heterogeneous
computational cluster and the
proposed workflow scheduling
model
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Table 2 Codes on different levels

Programming framework Layered structure

Job distribution level DAG analysis Java

Resource allocation

Hi-WAY level Scheduling of the training
tasks and jobs

Java

Cluster level Clustering of
heterogeneous resources

Java

Step 4: Actual Scheduling of Hi-WAY Jobs—Finally,
the actual scheduling of Hi-WAY jobs is conducted based
on the data obtained from the training task. This information
assists the scheduler in making optimal decisions regarding
job allocation to suitable nodes.

3.3 The programming Language of the Proposed
Algorithm

Table 2 shows the programming language for scheduling and
distributing jobs, DAG analysis, and cluster creation.

3.4 Workflows

In this study, three workflow graphs illustrate the pro-
posedmethod’swork:Gene2life,Avianflu_small, andEpige-
nomics, with 8, 104, and 100 Hi-WAY jobs. Gene2life is a
workflow typically used to analyze molecular biology [29].
This workflow receives a DNA sequence and searches for
its match in the database and correlations based on func-
tion and organism. Figure 2 shows the Hi-WAY jobs of the
Gene2life workflow graph. The workflow Avianflu_small is
derived from the Avian-Flu Grid project, which develops a
global infrastructure for studying Avian-Flu as an infectious
agent and a pandemic threat. Figure 3 shows the workflow
used in this project’s drug design process to understand host
selectivity and drug resistance mechanisms. The workflow
has several small preprocessing steps followed by a final step
where up to 1,000 parallel tasks are spawned. The data prod-
ucts of this workflow are small. The third workflow is related
to the Epigenome center, which maps human cells’ epige-
netic state on a genome-wide scale. Epigenomic workflow
is a parallel data processing pipeline whereby the Pegasus
workflowmanagement system is utilized to automate a series
of gene sequence operations [14]. The tasks of this workflow
are illustrated in Fig. 4.

3.5 Job Prioritization in theWorkflow Graph

InWSH, DAG jobs are prioritized using Eqs. 1, 2, and 3 [33].
It should be noted that the communication cost is ignored

Fig. 2 Tasks of Gene2life workflow graph [29]

Fig. 3 Tasks of Avianflu_small workflow graph [29]

for simplicity in the proposed method, WSH. The upward
ranking is defined as Eqs. 1 and 2.

(1)

UpwardRank
(
job(i)

) � Wi + max
job( j)∈Successor(job(i))

(
C(i , j)

+ UpwardRank
(
job( j)

))
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Fig. 4 Tasks of Epigenomics workflow graph [29]

Table 3 Calculation of upward rank

HI-WAY JOB UPWARDRANK

Blast1 1

Blast2 2

Clustalw 3

Clustalw 4

Dnapars 5

Protpars 6

Drawgram1 7

Drawgram2 8

UpwardRank
(
jobexit

) � Wexit (2)

In these equations, Wl is the average of computation costs
of job(i), C(i,j) is the communication cost from job(i) to job(j),
which is zero, and Successor(job(i)) is the set of jobs that
come immediately after job(i). The exit Hi-WAY job is a
job without a child. The upward ranking is calculated by
traversing the graph from the exit Hi-WAY job. Table 3 shows
the upward ranking of each Hi-WAY job in Gene2life.

The jobs in each subcluster have different finish times. The
average computation cost can be obtained by running the job
on the first node in each cluster and then averaging over the
clusters. Table 4 shows each Hi-WAY job’s computational
cost in the Gene2life workflow graph on a computing node.

Table 4 Computational costs of each job on a computing node

Type of computing node Hi-WAY job Computational cost

Virtual machine Blast1 01:02

Blast2 01:02

Clustalw 01:30

Clustalw 01:30

Dnapars 00:19

Protpars 00:16

Drawgram1 00:18

Drawgram2 00:18

(The time is in minutes and seconds.) This table will be used
for sorting the clusters and calculating the upward rank of
Hi-WAY jobs.

3.6 The Resource Allocation Policy of the Proposed
Method

For each cluster, a variable is defined to show the number of
nodes that have executed a job. In order to find the node that
would minimize the finish time, the scheduler first assigns
the training task to every cluster’s first nodes to run. The
NodeManager reports the finish times to the ResourceMan-
ager. The scheduler then sorts the clusters based on these
times. In order to run the job, the variable of each cluster
is assessed, and then a set is defined. The nodes of clusters
are added to this collection based on the policies outlined in
Fig. 5 to select the node with the quickest finishing time. The
variables used in running the training task, prioritizing the
clusters, and selecting the best node are:

FT[Task(i), ct ]: the finish time of the training task on the
container ct.

EST[job(i), ct ] and EFT[job(i), ct ]: the earliest start time
and the earliest finish time of jobi.

ASTjob(i) andAFTjob(i): the actual start time and the actual
finish time of job(i).

For the node that reduces thefinish timeof theHi-WAYjob
more than any other considered node, ASTjob(i) andAFTjob(i)

will be set to values of ESTjob(i) and EFTjob(i), respectively.
For the first input Hi-WAY job in DAG,
ASTjob(1) � ESTjob(1)=0.
The values of ESTjob(i)and EFTjob(i) are calculated from

the recursive relations 3, 4, and 5, derived from [33].

(3)

EST[job(i), c t ] � max{readyTime(job(i)),

containeravailTime(ct )}

EFT[job(i), c t ] � ESTJob(i) + w(job(i), ct ) (4)
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Fig. 5 The proposed scheduling
algorithm, WSH

1: procedure UpwardRank_OrderRank (WF, Some information Like Table 4)
2: ComputeRank();
3: SortRank();
4: end  Procedure

readyTime
(
job(i)

) � max
job( j)∈ predecessor(job(i))

(AFTjob( j))

(5)

In order to calculate ESTjob(i), every job immediately
before job(i) should be run. It should also be determined in
which time interval the container is available to run jobs.
The predecessor(job(i)) is the set of jobs immediately before
jobi. readyTime(jobi) represents the time at which all of the
data needed for job(i) are available and equals the maximum
finish times of all jobs immediately before jobi. container-
availTime(ct) is when the container ct is finished with the
previous job, and is ready to run job(i). After the schedul-
ing of job(i) on the container that minimizes the finish time,
and thus obtaining the actual finish time EFT[job(i), cm] the
actual start time,AFTjob(i):, can be obtained by the following
equation:

ASTjobi � AFTjobi − w(jobi , ct )

Figure 6 shows the process of the proposed scheduler,
WSH, which consists of three subprocesses.

The first subprocess is the algorithm shown in Fig. 7. In
this algorithm, the upward ranks of all Hi-WAY jobs are
first calculated, and then sorted in ascending order using the
OrderRank() function.

Figure 8 displays the algorithm used to run the training
tasks and sort the clusters for Hi-WAY jobs. Here, WF is
the workflow, job_priority_queue is the priority queue of
the Hi-WAY jobs, Clus_set() is the list of available clusters,
job_Clus_sort is the array in which the sorted clusters for
each job are stored based on the finish time of the training
task, and Task_list() is the list of the tasks of a job in the
workflow graph. In steps 8 and 9, the job is selected based
on its priority from the top of the job queues. In step 10, each
job’s first task from the task list is determined. In steps 11
and 12, the task is assigned to the first node of each cluster,
and in steps 13 and 14, the obtained finish times are added
to the array jobs_Clus_sort. In step 16, the jobs_Clus_sort
array is sorted for the considered job. Finally, in step 17, the
Hi-WAY job is deleted from the priority list of jobs.

Figure 5 shows the algorithm of Hi-WAY job schedul-
ing based on cluster priorities. Jobs_Clus_sort is the list of
clusters sorted for jobs, and the list of nodes is the list of
nodes that should be considered for selecting the best node
that minimizes the finish time of the job. NodeA is the list
of nodes that have run a job. NodeA is the node that has not

yet run a job. Step 10 determines whether there is a job that
should be scheduled.

In step 11, the job with the highest priority is selected to
be run. In step 12, the list of prioritized clusters based on
the training task is extracted, and the cluster with the highest
priority is chosen. In steps 13 to 16, if the cluster nodes have
executed a job, they are added sequentially to list of nodes.
In steps 17 to 21, if nodes in the cluster have not completed
a job, one such node is added to the list of nodes alongside
nodes that have executed a job. All nodes in list of nodes are
evaluated in steps 23 to 25 to determine the optimal node for
minimizing the job’s finish time. In steps 26 and 27, the job is
assigned to the node with the best finish time, and the earliest
finish time is stored as the actual finish time. In steps 28 and
29, if the node that minimizes the finish time of the job is the
last in list of nodes, it is added to the set of nodes that have run
a job. In steps 30 to 33, all nodes will be declared available if
all nodes are already selected based on their optimality, and
the final cluster (the one with the lowest priority) reaches the
next job. The comparison for selecting the best nodewill start
from the clusters with the highest priority. Finally, in step 34,
list of nodes will be cleared, and in step 35, the scheduled
job will be deleted from the job priority queues.

4 Case Study:Optimization of Avian-Flu Task
Scheduling in the Data Center

The Avian-Flu project focuses on analyzing data related to
the outbreak of avian influenza. Given the large volume and
complexity of the data, optimizing task scheduling for effi-
cient processing of this information is crucial.

4.1 Challenges

Volume and Complexity of Data: The data related to the
avian influenza outbreak are continuously increasing and
encompasses various types of information.

Heterogeneity of Resources: The data center utilizes
a heterogeneous cluster composed of nodes with different
specifications. This complicates scheduling and task alloca-
tion.

4.2 Solutions

Cluster dividing: The heterogeneous cluster was divided
into subclusters, each with similar processing power and
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Fig. 6 The upward ranking
calculation algorithm

1: procedure WSH (WF, Set of predict parameters)
2: Definition Arguments
3:

4: UpwardRank_OrderRank();
5: TrainingTask_Ordercluster();
7: job Scheduling();
8: end Procedure

Fig. 7 The algorithm for sorting
clusters and running the training
task

1: procedure TrainingTask_Ordercluster(WF,  job_priority_queue, Clus_set)
2: Definition of Argumants{
3:

4: FT[Task(i),node] Finish Time of  Training Task on node
5:

6: job_Clus_sort[clus(i), task] an Array keeps  Finish Time of  Training       
Task in the clusi

7: Clus_set an Array keeps all the Clusters names }}
8: while there are unscheduled jobs in the job_priority_queue do
9: Select the first jobj
10: Select the first Task in Task_List() of the selected job; 
11: for each clusi in the Clus_set() do
12: Select the first node from clusi;
13: Compute FT[Task(i), node];
14: Add to the jobj_ Clus_sort[clus(i),FTTASK];
15: end for
16: Sort jobj_Clus_sort by FTTASK;
17: Remove the selected job from the job_priority_queue;
18: end while
19: end procedure

memory capacity. This dividing improved resource alloca-
tion and reduced latency.

Task Prioritization:Tasks related to the Avian-Flu work-
flow were prioritized based on an upward ranking method.
This action helped determine the precedence of each task.

Execution of a Training Task: A training task was
executed to gather information about the performance and
effectiveness of the resources. This information was utilized
to optimize task allocation to suitable nodes.

Actual Scheduling: The actual scheduling of Avian-Flu
tasks was conducted based on the data obtained from the
training task, leading to increased efficiency and reduced
overall processing time.

4.3 Results

By implementing these steps, task scheduling was signif-
icantly optimized, leading to increased efficiency, reduced
workflow execution time, and enhanced resource effective-
ness.

5 Implementation and Analysis

Some traditional workflow management systems, includ-
ing Pegasus, Taverna, Galaxy, Nextflow, and Toil, can use
Hi-WAY as a complementary system. This is also true for
distributed workflowmanagement systems such as Tez, Chi-
ron, Kepler, and Oozie [36]. Hi-WAY uses Hadoop 2.0 as
the underlying system for managing distributed computa-
tional resources and supports the workflows extracted by
the Galaxy workflow management system and DAX and
Cuneiform workflow languages.

The advantages of Hi-WAY over other workflowmanage-
ment systems include:

• Support of multiple workflow languages
• Iterative workflows
• Improved efficiency with adaptive scheduling
• Scalability

For the evaluation, workflows were processed using both
the WSH and HEFT Java code [28] on an HP DL 580
G8 server equipped with an Xeon E-7 4890-Intel proces-
sor operating at 2.8 GHz per core. The Hadoop platform
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Fig. 8 The job scheduling
algorithm

1: procedure job Scheduling (WF, job_priority_queue, Clus_set)
2: Definition of Argumants{
3: list-of-

the criterion for selecting is minimum Finish Time).
4: AFTjob
5: nodeA ave executed a job
6: nodeIn
7: ESTjob
8: EFTjob
9: nodem EFT }
10: while there are unscheduled jobs in the job_priority_queue do
11: Select the first jobj from the job_priority_queue for scheduling;
12: for each clusi in the jobj_ Clus_sort do
13: if (all node in clusi have executed at least one job){
14: for each nodej in the clusi () do
15: list-of-nodes.add(nodej);
16: end for
17: else {
18: list-of-nodes.add(nodeA);
19: list-of-nodes.add(nodeIn);
20: break;
21: }
22: end for
23: for each nodei in the list-of-nodes do
24: Compute the value of jobEST[job,nodei] and jobEFT[job, nodei];
25: end for
26: Assign job to the nodem, EFTjob;
27: Set AFTjob = EFTjob;
28: if (nodem= the last node in list-of-nodes)
29: Add this node(nodem) to nodes in clusi that have executed a job;
30: if (nodem=last node of the last clus in  job_Clus_sort){
31: for each clusi in the clus_set() do
32: All nodes are ready to run a job;
33: end for
34: list-of-nodes.clear(); // clear the whole items in list-of-nodes.
35: Remove the jobj from the job_priority_queue;
36: end while
37: end procedure

was installed on virtual machines created on the server. To
construct various computational clusters, we utilized vir-
tual machines, each containing three slave computing nodes.
Table 5 presents the specifications of a representative slave
node within these clusters. To form four clusters, twelve
nodes were designated as slaves, with one node serving as
the master. Physical machines were employed to evaluate
the algorithm, and the network structure, encompassing the
clusters and physical machines, is detailed in Table 6. Spec-
ifications for other clusters in different experiments are not
included.Hadoopwas installed on all physicalmachines. The
master node was configured with a dual-core processor and
2048 megabytes of RAM. Each subcluster comprised three
computing nodes within the clusters, composed of virtual
machines.

For the master node, a virtual processor (vCPU) was
defined, and its memory was set equal to the maximum com-
putational resources of the nodes. The scheduling operation
was performed for many workflows with different numbers
of jobs using the proposed scheduling algorithm. The output
data of Hadoop from Linux machines were used as the statis-
tical population. The results were compared with the results
of HEFT. Socket and Core show the number of processors
and cores in virtual machines, respectively.

5.1 Analysis of Performance

The measures used for comparing the performance of HEFT
and WSH, i.e., makespan, scheduling length ratio, and
speedup, were defined as in [33]. The makespan is when
a group of Hi-WAY jobs is finished. Thus, the lower the
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Table 5 The heterogeneous
computational cluster consists of
virtual machines

The heterogeneous computational cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Resources Resources Resources Resources

RAM vCPU RAM vCPU RAM vCPU RAM vCPU

4096 MB 4 Socket 2
Core

2048 MB 2 Socket 2
Core

1024 MB 1Socket 2
Core

512 MB 1Socket 1
Core

Table 6 The heterogeneous computational cluster consists of physical
machines

Computational
resources

The heterogeneous computational
cluster

Cluster 1 Cluster 2

Slave node 2 Slave node 1 Slave node 3

RAM 1024 MB 1024 MB 2048 MB

CPU 2 Core 2 Core 4 Core
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Fig. 9 Scheduling length ratio of the Aviansmall_flu workflow

makespan for a given workflow graph, the better the algo-
rithmperformance.Regarding scheduling length ratio (SLR),
the better algorithm is with a lower SLR. The measure
"speedup" reflects the effect of parallelization and is cal-
culated by dividing the sequential runtime by the parallel
runtime (makespan). The effectiveness of these policies was
compared according to the different characteristics of graphs
and computing nodes. In the experiments, SLR increases and
makespan decreases by adding computing nodes to create
a scheduler (finding the best computing node for each Hi-
WAY job). Figures 10 and 9 show the SLR, and Figs. 12 and
11 show the makespan obtained for Gene2life and Avian-
flu_small workflows.

Hi-WAY jobs’ allocations to computing nodes after
scheduling by HEFT and WSH are presented in Tables 7
and 8.

Figures 14 and 13 show speedup increases with the num-
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Table 7 Allocation of Gene2life Hi-WAY job by WSH

Hi-WAY job Node name Cluster name

Clustalw1 C1h2datanode2 C1

Protpars C1h2datanode2 C1

Blast1 C2h2datanode3 C2

Blast2 C1h2datanode1 C1

Drawgram1 C1h2datanode1 C1

Clustalw2 C2h2datanode3 C2

Dnapars C2h2datanode3 C2

Drawgram2 C2h2datanode3 C2

Table 8 Allocation of Gene2life Hi-WAY job by HEFT

Cluster name Node name Hi-WAY job

C2 C2h2datanode3 Blast1

C1 C1h2datanode2 Blast2

C1 C1h2datanode1 Drawgram1

C1 C1h2datanode2 Clustalw1

C2 C2h2datanode3 Dnapars

C2 C2h2datanode3 Drawgram2

C2 C2h2datanode3 Clustalw2

C1 C1h2datanode1 Protpars
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Fig. 13 Speedup in Gene2life workflow graph
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Table 9 SLR of HEFT and WSH with physical machines

HEFT WSH Name of the workflow

00:14:59 00:12:40 gen2life

11:27:00 05:01:00 Avianflu_small

Table 10 SLR of Epigenomics in HEFT and WSH algorithms

HEFT WSH

31:05:17 16:04:56

Table 11 Scheduler creation time of HEFT and WSH for Epigenomics

HEFT WSH

17:49:25 06:33:13

Table 12 The runtime of Epigenomics on the schedulers built by HEFT
and WSH

HEFT WSH

13:15:52 09:31:43

ber of computing nodes. Based on these results, in those
workflows with a huge number of tasks and where the net-
work is structured, each cluster contains many nodes, WSH
performs better than HEFT in terms of SLR, speedup, and
runtime.

WSH outperforms HEFT in homogeneous computing
nodes. Table 9 shows the SLR obtained for Gene2life and
Avianflu_small workflows with three virtual machine com-
puting nodes in each cluster.

The Epigenome center processes DNAs, and the Epige-
nomics workflow is computing-intensive [14]. Tables 10, 11,
and 12 show the SLR, scheduler creation time, andmakespan
obtained for the Epigenomics workflow.

6 Discussion

Our proposed method for scheduling workflows, utilizing
learning tasks andnode clustering, has significantly enhanced
resource efficiency. While the HEFT algorithm relies on
prioritizing tasks without considering the specifics of het-
erogeneous resources, our approach extracts precise and
comprehensive information from each cluster by dividing
heterogeneous clusters into homogeneous subclusters. To
assess the impact of various structures on the distribution
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and efficiency of workflow processing, diverse clusters were
employed. This diversity allows us to evaluate the effective-
ness and efficiency of resources under different conditions.
By varying the number of clusters, the load distribution
among nodes is optimized, and resource allocation is facil-
itated in a more flexible manner. The execution of learning
tasks in each cluster retrieves the necessary information from
only one node, thereby reducing the need to conduct tests on
all nodes. The results of this research demonstrate the superi-
ority of our proposedmethod compared toHEFT, particularly
in heterogeneous and variable conditions. Specifically, a 42%
improvement in average scheduling time, a 20% reduction
in makespan, and a 37% enhancement in execution speed
indicate significant advancements in optimizing resource uti-
lization and task execution time. The scientific applications
of this proposed method, as one of the schedulers for sci-
entific and data-driven workflow management systems, are
clearly evident, especially in the fields of cloud computing
and distributed systems. These systems enable parallel pro-
cessing and load distribution, which can effectively address
large and complex data analysis within shorter time frames.
For instance, in research projects such as environmental pre-
dictions anddisease analysis, these optimizations canprovide
considerable practical and economic value. Despite the suc-
cesses achieved, the challenges and limitations of thismethod
are noteworthy. In rapidly changing environments, there is
a need for quicker adaptability and more precise config-
urations. These challenges may impact the overall system
performance; thus, future research should focus on address-
ing these issues.

7 Conclusion and Future Scope

Research corporations and organizations are the owners
and sources of massive scientific data today. Using high-
level programming languages, researchers can implement
the tasks they see fit for their work context and link them
with workflow definition languages to produce workflow
graphs. Processing workflow graphs involving big data
requires powerful distributedworkflow systems and schedul-
ing algorithms capable of delivering the desired outputs in a
significantly short time by executingmultiple tasks on a clus-
ter of homogeneous or heterogeneous computing resources in
different distributed systemsmodels. Because of the schedul-
ing policies developed for heterogeneous environments, this
research investigated the scheduling of scientific workflow
graphs in such settings. Using the introduced algorithm,
WSH, workflow graph tasks can be adapted to the nodes’
computational capacity throughout scheduling. The experi-
mental results demonstrated the ability of WSH to improve
speedup, scheduling length, and makespan. In the future,
we will explore the application of advanced optimization

algorithms, such as PSO and genetic algorithms. To further
evaluate and assess effectiveness, the proposed method will
be tested using real-world data and communication costs.
Also, communication costs are indeed a significant factor
in distributed systems, and the author acknowledges their
importance bymentioning the intent to include them in future
evaluations.
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